- 4 r を正の実数とする。半径がそれぞれ r , 2r , 3r の 3 つの球 C_1 , C_2 , C_3 と , これらすべてに接する平面 α がある。ただし , 3 つの球はすべて平面 α の同じ側で接しているものとする。すなわち , 3 つの球のそれぞれの中心を結ぶ線分は , いずれも平面 α と交わらないものとする。3 つの球 C_1 , C_2 , C_3 と平面との接点をそれぞれ P_1 , P_2 , P_3 とする。空間において , 基点 O を定め , $\overrightarrow{OP_1} = \overrightarrow{p}$, $\overrightarrow{OP_2} = \overrightarrow{p} + \overrightarrow{a}$, $\overrightarrow{OP_3} = \overrightarrow{p} + \overrightarrow{b}$ とすると , $|\overrightarrow{a}| = 3r$, $|\overrightarrow{b}| = 4r$ であり , $|\overrightarrow{a}|$ と $|\overrightarrow{b}|$ のなす角は $|\overrightarrow{b}|$ 0° である。以下の問いに答えよ。
- (1) 点 Q を平面 α 上にある点とする。球 C_2 の中心と点 Q との距離を d_1 , 球 C_3 の中心と点 Q との距離を d_2 とする。このとき , $\overrightarrow{d_1} + \overrightarrow{d_2}$ を最小にする点 Q の位置ベクトル \overrightarrow{OQ} を , \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{p} を用いて表せ。
- (2) 3 つの球 C_1 , C_2 , C_3 の中心を通る平面 β と , 平面 α との交線を l とする。l を \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{p} と媒介変数 t を用いて媒介変数表示せよ。
- (3) 点 R を直線 l 上にある点とする。球 C_2 の中心と点 R との距離を最小にする点 R の位置ベクトル \overrightarrow{OR} を , \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{p} を用いて表せ。