- 3 原点 O を中心とする 1 つの円周上に相異なる 4 点 A_0 , B_0 , C_0 , D_0 をとる A_0 , B_0 , C_0 , D_0 の位置ベクトルをそれぞれ \vec{a} , \vec{b} , \vec{c} , \vec{d} と書く A_0 .
- (1) $\triangle B_0C_0D_0$, $\triangle C_0D_0A_0$, $\triangle D_0A_0B_0$, $\triangle A_0B_0C_0$ の重心をそれぞれ A_1 , B_1 , C_1 , D_1 とする . このとき , この 4 点は同一円周上にあることを示し , その円の中心 P_1 の位置ベクトル $\overrightarrow{OP_1}$ を \vec{a} , \vec{b} , \vec{c} , \vec{d} で表せ .
- (2) 4点 A_1 , B_1 , C_1 , D_1 に対し上と同様に A_2 , B_2 , C_2 , D_2 を定め, A_2 , B_2 , C_2 , D_2 を通る円の中心を P_2 とする.以下,同様に P_3 , P_4 , \cdots を定める. $\overrightarrow{P_nP_{n+1}}$ を \vec{a} , \vec{b} , \vec{c} , \vec{d} で表せ.
- (3) $\lim_{n \to \infty} |P_nQ| = 0$ を満たす点 Q の位置ベクトルを \vec{a} , \vec{b} , \vec{c} , \vec{d} で表せ.ただし, $|P_nQ|$ は線分 P_nQ の長さである.