$$2$$
 $A=egin{pmatrix} 2 & 1 \ 0 & 2 \end{pmatrix}$ とし,正の整数 n に対し $A^n=egin{pmatrix} a_n & b_n \ c_n & d_n \end{pmatrix}$ とおく.

- (1) a_n , b_n , c_n , d_n を求めよ.
- (2) a_n , b_n , c_n , d_n を 3 で割った余りを α_n , β_n , γ_n , δ_n と書く . $\begin{pmatrix} \alpha_n & \beta_n \\ \gamma_n & \delta_n \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ となるための必要十分条件は n が 6 の倍数であることを ませ